Difference between revisions of "VIP7 Construct examples"
m (→list::sortby example using Comparator: extended format) |
m (→list::sortby example using Comparator: added link to language reference page) |
||
Line 504: | Line 504: | ||
zz_triples). | zz_triples). | ||
</vip> | </vip> | ||
Also see | |||
[http://wiki.visual-prolog.com/index.php?title=Language_Reference/Terms#Sorting http://wiki.visual-prolog.com/index.php?title=Language_Reference/Terms#Sorting] | |||
=== More on core::function and core::predicate === | === More on core::function and core::predicate === |
Revision as of 14:37, 20 January 2010
This page contains a collection of basic examples for (mainly) the newer constructs found in VIP7.
Fact variables
Fact variables are the only mutable types in VIP.
First, a reminder for ordinary facts:
facts ndb_int : (integer). % a nondeterministic fact (0 to any number of values) db_int : (integer,string) determ. % a deterministic fact (0 to 1 value)
These types of fact are asserted and retracted.
Examples (fact variables)
facts zz_int:integer := 0. zz_fred:integer := erroneous. domains dom = dom(string,chaindb::ref). facts zz_dom : dom := erroneous. clauses pred() :- zz_int := 7, stdio::write("\n zz_int = ", zz_int), %will write "zz_int = 7" zz_int := zz_int+20, stdio::write("\n zz_int = ", zz_int), %will write "zz_int = 27" succeed.
Fact variables are great for counting e.g.
predicates how_many : () -> integer Count. clauses how_many() = zz_int :- zz_int := 0, foreach some_nondeterm_fact_or_pred() do zz_int := zz_int+1 end foreach. clauses pred() :- stdio::write("\n There are ", how_many(), " items").
Lists - findall and list comprehension
See Lists and Recursion findall() has been deprecated, so use the list comprehension construct.
Examples
facts ndb : (integer). %default is nondeterm for a fact clauses ndb(1). ndb(2). ndb(3). .... ndb(10). clauses pred_old() :- findall(X,ndb(X),List). %results in List = [1,2,3,4,5,6,7,8,9,10] clauses pred_new() :- List = [X||ndb(X)]. %results in List = [1,2,3,4,5,6,7,8,9,10] clauses pred_filter() :- List = [X||ndb(X), X>6]. %results in List = [7,8,9,10] pred_filter() :- List = [X||ndb(X), X mod 2 = 0]. %results in List = [2,4,6,8,10] pred_filter() :- List = [X||ndb(X), X mod 2 = 0, X<7]. %results in List = [2,4,6] pred_filter() :- zz_int := 0, List = [X||ndb(X), X mod 2 = 0, X<7, zz_int := zz_int+1]. %results in List = [2,4,6] and zz_int = 3. pred_filter() :- List = [X||ndb(X), Y = pred2(X), Y>10]. %with pred2(X) = X^2. %results in List = [4,5,6,7,8,9,10] %reason - X = 3 gives Y = 9 which is < 10. pred_other() :- L = [1,2,3,4,5,6,7,8,9,10], LIST = [ X || X = list::getMember_nd(L)]. %results in List = L pred_other() :- Primes = [X||X = std::fromto(1,300), L1 = [Y||Y = std::fromto(2,150)], tt(X,L1)]. %results in List = prime numbers, with: class predicates tt : (integer,integer*) determ. clauses tt(_X,[]) :- !. tt(X,[X|_]) :- !. tt(X,[Y|L]) :- X mod Y<>0, tt(X,L).
if-then-else (code)
Examples
clauses pred(X,Y) = Z :- if X = 0 then Z = "x is zero" elseif X>0 then if pred3(Y) = true then Z = "x>0 and pred(Y) is true" else Z = "x>0 and pred(Y) is false" end if %note, no comma here either else Z = "x <0" end if.
#if #then #else (directive for conditional compilation)
Examples
constants u64_con = 1. int_con = 2. real_con = 3. compile_big_con = u64_con. %change this and then recompile. #if compile_big_con = u64_con #then predicates pred : () -> unsigned64. clauses pred() = U64 :- U64 = 78766. #elseif compile_big_con = int_con #then predicates pred : () -> integer. clauses pred() = Int :- Int = 20. #else predicates pred : (real [out]). clauses pred(0.766). #endif
Note Code construct uses if - then, elseif - then, else, end if compiler directive uses #if - #then, #elseif - #then, #else, #endif (just the "end if" is "different")
Trap and try/catch/finally
See Try-catch-finally Note, in Built-in entities/Predicates suggests using try-end try instead of trap(_,_,_)
Example 1
clauses pred_all() :- try call_pred_that_might_crash(0) catch ErrorNo do call_own_exception_pred(ErrorNo) finally always_call_this_anyway() end try. class predicates call_pred_that_might_crash : (integer). call_own_exception_pred : (pointer ErrorNo). always_call_this_anyway : (). clauses call_pred_that_might_crash(X) :- Y = 9/X. call_own_exception_pred(ErrorNo) :- vpiCommonDialogs::note("crashed"). always_call_this_anyway() :- vpiCommonDialogs::note("finally reached").
Example 2
clauses pred_some() :- try call_pred_that_might_crash(0) finally always_call_this_anyway() end try.
% in this case, VIP will automatically pop up its exception dialog
Example 3
clauses pred_some() :- try call_pred_that_might_crash(0) catch ErrorNo do call_own_exception_pred(ErrorNo) end try.
Example 4 - illegal - it must have a catch or finally
clauses pred_illegal() :- try call_pred_that_might_crash(0) end try.
Foreach
See Foreach
64 bit numbers - history
Up to VIP7.1, integer64 etc were defined as:
domains unsigned64 = unsigned64(unsigned32 Low, unsigned32 High). integer64 = integer64(unsigned32 Low, integer32 High).
In VIP7.2 these have been renamed:
domains unsigned64_struct = unsigned64(unsigned Low, unsigned High). integer64_struct = integer64(unsigned Low, integer High).
So, for example, in VIP7.1:
predicates getFileProperties : ( string FileName, fileSystem_api::fileAttributes Attributes, fileSystem_api::fileSize Size, core::gmtTimeValue Creation, core::gmtTimeValue LastAccess, core::gmtTimeValue LastChange) procedure (i,o,o,o,o,o).
if you needed use (and write) fileSize and times, you would have to have done some juggling (such as converting them to real numbers).
To generate a 64 bit random number:
predicates %before VIP7.2 gen64 : () -> unsigned64. clauses gen64() = U64 :- N = 2^32, Low = math::random(N+0), High = math::random(N+0), U64 = unsigned64(Low,High).
and possibly you would have needed (e.g.) math::add:
predicates add : (core::unsigned64 Augend, core::unsigned64 Addend) -> core::unsigned64 Sum
It's now totally straightforward in VIP7.2 - just treat 64 bit numbers like any other number. You may also want these conversions - found in core:: - for old code (this snippet is stolen from Thomas' post)
predicates toUnsigned64 : (unsigned64_struct) -> unsigned64. fromUnsigned64 : (unsigned64) -> unsigned64_struct. toInteger64 : (integer64_struct) -> integer64. fromInteger64 : (integer64) -> integer64_struct.
And just for reference:
- integer range = -2^31 to +2^31-1 = -2147483648 .. 2147483647
- unsigned range = 0 to (2^32)-1 = 4294967295
- integer64 range = -2^63 to 2^63
- unsigned64 range = 0 to (2^64)-1 = 18446744073709551615 ( = 1.844..E19)
Polymorphic Domains
First, check out the definitions - core::tuple{}. And while you're there, just below, see core::predicate{} and core::function{}, then followed by comparator{A} and list{A}.
The domains in class list:: are polymorphic, but you can define your own polymorphic domains. Here are some examples:
domains poly_dom{A,B} = poly_def(A,B).
When you use it in your code, A and B can be any other domain. The domain name is poly_dom{A,B}, and you reference it you must use its whole name (not just poly_dom) e.g.
domains joe{A,B} = poly_dom{A,B}*. /* the next two lines are illegal poly_dom{A,B} = poly_def(A,B)*. poly_dom{A,A} = poly_def(A,A). */ fred{A,B} = fred(poly_dom{A,B},integer). maybe_silly_dom{A,B} = silly2(A,B); silly(A); pd(poly_dom{A,B}); poly_dom(A,B);%IS NOT THE SAME POLY_DOM!! (notice no braces) s(string). another{A} = i(integer); s(string); a(A); self(another({A}). facts zz_poly_dom:poly_dom{integer,integer} := erroneous. class predicates p_morphic_test : (). clauses p_morphic_test() :- zz_poly_dom := poly_def(1,5), call_pd(zz_poly_dom), fail. p_morphic_test() :- PD = poly_def(1,["an example","or two"]), call_pd(PD), fail. p_morphic_test() :- Q = [poly_def(X, Y) || X = std::fromTo(1, 4), Y = std::fromTo(1, 5)], stdio::write("\n",Q), fail. p_morphic_test(). class predicates call_pd : (poly_dom{A,B}). clauses call_pd(POLY_DOM) :- stdio::write("\n",POLY_DOM), fail. call_pd(poly_def(A,B)) :- %note this is POLY_DEF stdio::write("\n",A,B), fail. call_pd(_).
Properties
Properties in a class are used almost identically to fact variables, but properties can be set directly (from another class), without having to declare a public predicate to make the change.
Example
interface fred domains complete_dom = is_complete; not_complete. properties prop_complete : complete_dom. end interface fred
In fred.pro:
implement fred facts zz_complete:complete_dom := erroneous. clauses %for the property prop_complete() = zz_complete. %get prop_complete(COMPLETE) :- zz_complete := COMPLETE. %set
In some other class that calls class fred:
implement other open fred clauses pred() :- Fred = fred::new(), Fred:prop_complete := is_complete,% to set the value Value = Fred:prop_complete, !. %get
Comparators and compare
First, look at the definition of core::comparator:
domains comparator{T} = function{T, T, compareResult}.
compareResult's definition can is found here: compareResult
Examples
class predicates p_compare_test : (). clauses p_compare_test() :- CompareResult = compare(7,2). %will bind CompareResult to '''greater()''' %(because 7 > 2) p_compare_test() :- CompareResult = compare(2,2). %will bind CompareResult to '''equal()''' p_compare_test() :- CompareResult = compare("a","z"). %will bind CompareResult to '''less()'''
But you may wish to check your own domains to see which is "greater" - and of course you must define this yourself, by defining your own predicate as a core::comparator Here is a simple domain in which only the integer parts of the variables are checked to see which is greater:
domains s = s(string,integer). class predicates compare_it: core::comparator{s}. clauses compare_it(A,B) = CompareResult :- %since this is a core::function(T,T,compareResult) A = s(_,I), B = s(_,J), if I<J then CompareResult = less() elseif I = J then CompareResult = equal() else CompareResult = greater() end if. class predicates p_compare_test : (). clauses p_compare_test() :- S1 = s("abc",7), S2 = s("fred",9), CompareResult = compare_it(S1,S2), %will give CompareResult = less, since 7<9.
...a bit pointless since the string part of the variables have been ignored, but it is easy to see how to expand compare_it() to your own needs.
list::sortby example using Comparator
list::sortby also uses Compareresult.
Say you have the following domain and fact:
domains triple=triple(string,gmttimevalue,integer). facts zz_triples:triple:=erroneous.
zz_triples is populated, but it needs to be sorted by date/time. Then:
clauses test():- zz_triples:=list::sortby(cp,zz_triples). predicates cp:core::comparator{triple}. clauses cp(A,B)=CompareResult:- A=triple(_,ATv,_), B=triple(_,BTv,_), GMTA=gmttime::new(Atv), GMTB=gmttime::new(Btv), if GMTA:before(GMTB) then CompareResult=less else CompareResult=greater end if,!.
or
test():- zz_triples:=list::sortBy( {(A,B)=CompareResult:- A=triple(_,ATv,_), B=triple(_,BTv,_), GMTA=gmttime::new(Atv), GMTB=gmttime::new(Btv), if GMTA:before(GMTB) then CompareResult=less else CompareResult=greater end if}, zz_triples).
Also see http://wiki.visual-prolog.com/index.php?title=Language_Reference/Terms#Sorting
More on core::function and core::predicate
Again, please check out core::function. core::predicate is essentially the same, but does not return a value.
Example 1
class predicates two_times:function{integer,integer}. % or two_times: core::function{integer,integer}. clauses two_times(A) = 2*A. class predicates p_function : (). clauses p_function() :- Z = two_times(2), %binds Z to 4
Example 2
domains fred_dom{A,B} = predicate{A,B}. % or fred_dom{A,B} = core::predicate{A,B}. class predicates fred_pred: fred_dom{A,B}. clauses fred_pred(A,B) :- stdio::write("\n",A," ",B). class predicates p_pred : (). clauses p_pred() :- fred_pred("one",2).
Example 3
class predicates add_func: function{integer,integer}. clauses add_func(B) = B+1. class predicates p_function : (). clauses p_function() :- X = add_func(5), %X is bound to 6
Anonymous predicates
(under development)
Examples
clauses run() :- Anon = {() = 9}, K = Anon(). %results in K = 9 run() :- Anon = { = 88}, K = Anon(). %results in K = 88. run() :- Anon = {(A,B) = A+B}, K = Anon(4,8), %results in K = 12. run() :- Anon = { (A,B) = C :- R = math::random(7), C = A+B+R, stdio::wRite("RRRR = ",R) }, K = Anon(4,8). %results in K = 12 + a random number <7 run() :- Anon = { = f_abc(3)}, K = Anon(), stdio::write("\nI = { = f_abc(3)} gives ",K), fail. run().
Threads
To start a thread:
clauses pred() :- _ = thread::start(fred). predicates fred : (). clauses fred() :- .....
fred can have no arguments, so no argument brackets are allowed:
_ = thread::start(fred())
is illegal.
Using Anonymous Predicates is rather simple to pass arguments to thread:
clauses pred(X) :- _ = thread::start( { :- fred(X) } ). predicates fred : (integer K). clauses fred(K) :- ...